
Pergamon 

www.elsevier.com/locate/jappmathmech 

1 A&. Moths Mech.s, Vol. 66, No. 1, pp. 99-105,2002 
0 2002 Elsevier Science Ltd 

PII: SOO21-8928(02)00013-8 
All rights resewed. Printed in Great Britain 

0021-8928/02/hsee front matter 

DYNAMIC PROBLEMS FOR THE SINE-GORDON 
EQUATION WITH VARIABLE COEFFICIENTS. 

EXACT SOLUTIONS-F 

E. L. AERO 

St Petersburg 

(Received 19 October 2000) 

The sine-Gordon equation with dissipation and a variable coefficient on the non-linear term is considered. This equation describes 
waves in an energetically open system with an external field acting on it which varies monotonically with time. Scale transformations, 
matched with the external field and the dissipation, are introduced which reduce the generalized equation to the standard equation. 
It is shown that processes for controlling the oscillations and waves exist for which the equation is transformed to a form with 
constant coeffici,ents and an effective dissipation which vanishes or is either positive (damping of the oscillations) or negative 
(their amplification). Waves, which propagate with a constant, decaying or increasing amplitude and variable frequency and velocity 
correspond to them. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. BASIC RELATIONS 

The non-linear dynamics of certain extended elastic systems with dissipation is described by the sine- 
Gordon equation (below, both signs are meaningful) 

i@,, =kAQ,+f*(f)sin@-9, (1.1) 

The subscripts denote derivatives with respect to the time t and A is the Laplace operator. The positive 
constant coefficientsj, k, y characterize the inertia, elasticity and dissipation respectively. The coefficient 
f2(t) represents the elastic energy of a homogeneous configuration or an external force. The required 
function Q(t, X, y, z) has the meaning of a displacement field (angular or linear) which is unimportant 
for the subsequent formal analysis. 

A model of an ensemble of elastically connected pendulums or oscillators formally corresponds to 
this equation. Real examples are liquid crystals, ferromagnetica materials, crystal lattices and other 
periodic structures, and, also, mechanical objects such as a flexible rod in a gravitational field, a 
membrane on a non-linear elastic base, etc. It is important that the topic of discussion is an open system 
with energy exchange due to dissipation and an external field. 

Special processes for controlling oscillations and the motion in general of the system of pendulums 
in question using an external force f(t) are of interest. Vibration control processes are known which 
lead to compensation of the damping and amplification of the oscillations as a result of resonance or 
their damping (in the case of antiresonance). It is clear that, here, we are dealing with a parametric 
equation. We are interested in the effects of the amplification or damping of oscillations but in a 
monotonic control process. 

As it applies toEq. (l.l), an approach, within the limits of which scale transformations are introduced 
which are matched with the external field and the dissipation, is effective. 

In certain cases, this allows the procedure for constructing the solution of Eq. (1.1) to be simplified 
considerable, and enables interesting systems of forced oscillations to be revealed. 

We will write Eq. (1.1) in the reduced coordinates X, x, rl, 5 which are related to t, X, y, z as follows: 

Self-adjusting scales for all of the coordinates are thereby introduced which take account of, in 
particular, the characteristic “time” s as a function of y and f(t). We have the obvious relations 
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j0, = f 2Qs, + fiJas, 0, = j@, / fi, kA = f 2x (1.3) 

The subscripts denotes a derivative with respect to the corresponding coordinate and d is the Laplace 
operator in the reduced coordinates 5, x, q. Equation (1.1) then takes the form 

Qrs = SD + sin @ - C(t)@,, (1.4) 

Here 

(1.5) 

We shall regard Eq. (1.4) as the sine-Gordon equation with an effective dissipation (G > 0) or with 
energy capture and pumping (G > 0). Both versions are realizable depending on the rate of change of 
the external force. 

In order to refine the meaning of the quantity G(t), we turn to the tirst equality in (1.3). On multiplying 
it by (I+, after some elementary reduction we obtain 

X?,=f347Wf ,,+(f2),@:fi. 2Q=.P,2 (1.6) 

Here Q is the kinetic energy of the oscillations and the second term on the right-hand side is the addition 
to its rate of change due to a variable external force. It can be seen that, on the basis of relations (1.5) 
and (1.3), 

0 I zc=wh2 +(f2Ps2 
2f4 

(1.7) 

Hence, the quantity G(t) in the reduced equation (1.4) is the energy exchange coefficient for an open 
elastoviscous system with an external field and a thermal “reservoir”. It is important that unlike 
dissipation, energy exchange with a field is not of fixed sign. If the rate (f’) is positive, energy leaves 
the system and, as in the case of dissipation, increases the damping of the motion. Otherwise, energy 
capture, that is, the pumping of energy, occurs which may compensate for damping of a dissipative nature. 

2. COMPLETE COMPENSATION OF DISSIPATIVE FORCES 

Complete compensation is achieved when the quantity G vanishes, that is, when the condition 

is satisfied. 

-(Itif’), =2/r, G=O (2.1) 

In this case, the negative rate of change of the external field is equal to twice the relaxation frequency 
l/r of the free oscillations. A similar condition holds in the case of parametric resonance at a real (and 
not an imaginary) frequency of the external field. In the case in question, there is an unusual kinetic 
resonance, that is, maximally intense action on the relaxing system. 

The undamped nature of the motion (with respect to the amplitude), which is a consequence of the 
pumping of energy from elsewhere, only occurs, as follows from condition (1.2), for a particular control 
process when 

fW=fo eq+-tlO f. = f(o), G=O 

In this case, Eq. (1.4) takes the form 

(2.2) 

a** =Z@fsinQ, (2.3) 

It only has constant coefficients and a number of its interesting particular solutions can be obtained. 
For instance, the exact solution in the bounded domain 10 s x s x0 for null boundary conditions has 
been found in [l]. It has the form 
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_ = acn Wl)X 0 
tg 2 

-cn(sK(v,)), s(0) = 0 
X0 

(2.4) 

Here, on denotes an elliptic cosine function, and K(vi) and K(v2), which are complete elliptic integrals 
of the first kind, are functions of the moduli 0 zz vl, v2 < 1. 

The periodic orientational oscillations of the structure of a nematic liquid crystal in a layer of thickness 
h with null boundary conditions in a constant magnetic field H = f. have been considered in [l]. The 
amplitude a is constant and the second elliptic cosine function oscillates in time, the role of which is 
played by the variables [l]. In the case of a variable field and dissipation, the dependence of this variable 
on the absolute time t introduces the effect of an external force. In accordance with relations (1.2) and 
(2.2), we can write 

x -=;, ~=~~o[l-e~p(-~)]=~~o[~+o[~)] 
X0 

(2.5) 

Here, the exponent is represented by a power series and O(t2/r2) is its residue; when t 4 r, it can be 
neglected and solution (2.4) represents forced standing oscillations, which are periodic in space and 
time, as they also were in the case considered earlier in [l]. Otherwise, periodic oscillations with a phase 
modulation are obtained which are also the subject of analysis. 

Having a variable fieldf(t) in mind, we will consider all the terms of the series in expansion (2.5). 
Taking account of the asynchronous nature of the oscillations, we introduce the periods of motion T,,. 
We define them as the successive “distances” between the zeros of the elliptic cosine by putting 
s = n (n = 1, 3, 5, . . .). Then 

It is obvious that the periods increase as the number of oscillations in increases, and the more strongly 
the shorter the characteristic time z and the smaller the dissipation coefficient y. An increase in the 
periods can lead to a change in the nature of the motion. So long as T,, 4 2, it has a periodic form but 
it becomes a periodic after the threshold T,, = 2 has been surmounted. The amplitude factor a cn(xK,/h) 
remains unchanged. 

The forced oscillations (by the external field) differ from the free oscillations in that, when the field 
fis constant, dissipation leads in the first place to damping the amplitude. The increase in their periods 
is a secondary effect. 

3. AMPLIFICATION AND DAMPING MODES 

We will now consider other control processes in which damping of the amplitude of the oscillations 
occurs that differs from the dissipative process or, conversely amplification of these oscillations is induced. 
Formally, they follow from the condition G(t) = Go, where the constant can be both positive (damping 
of the oscillations) and negative (their amplification). As a result, the equation of the oscillations again 
takes the form of an equation with constant coefficients 

ass = ;I@ + sin (0 - Co@, (3.1) 

It describes both decaying as well as increasing oscillations depending on the sign of the coefficient 
Go, which has already been mentioned above. Its solutions for an infinite, one-dimensional space are 
constructed, as is well known, using asymptotic methods [2]. 

The control functionf(t) is found from the equation obtained from relations (1.5) by replacing G(t) 
by Go, namely 

2Gof 2 (lnf2), =--- 
8 ‘5 

Its solution has the form 

(3.2) 
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The form of the corresponding curvesf(r) is defined by the ratio of the parameters Go, r and& We 
will first consider the case of the amplification of the oscillations Go < 0. Solution (3.3) then gives a 
sharply decaying monotonic curvef(t) which is such that 

Again, as in the case of complete compensationJ(0) = f0 and the frequency of the forced oscillations 
falls to zero with time. However, time values t < t, are now excluded. Finally, in order to reveal the 
growth in the amplitude, it is necessary to solve Eq. (3.1) taking account of the fact that Go < 0. 

We will consider the case of the damping of the oscillations Go > 0, which is represented by two modes, 
soft and hard. In the first case, Go < Yyl(fOr). The functionf(t), which is defined by expression (3.3), 
is then a monotonically decreasing bounded function, where 

f+O, r--)? f-f=, t--)-m, f(O)=fa (3.5) 
0 

It is also obvious that the frequency of the forced oscillations changes within hxed limits, decaying 
from the finite value of l/(Gor) to zero in the same way as the amplitude. 

The hard damping mode arises when Go > z,#T lfo. Then, f(t) is a function which increases 
monotonically from the value f = 1) /(GOT) when t + - 00 to infinity when t + tC, where tC is calculated 
using formula (3.4) but taking into account that Go is positive. An unbounded increase in the frequency 
of the forced vibrations from the finite value l/(Gor) also corresponds to this growth and, moreover, 
they decay in amplitude. The latter fact is also revealed on solving Eq. (3.1), where Go > 0. These 
conclusions were reached earlier for small values of Go in [2]. 

4. CONTROL OF A WAVE IN THE COMPENSATION MODE 

We will consider the control of the propagation of a two-dimensional wave O&y, t) in the compensation 
mode. Using (2.1), we obtain for the reduced variables 

s=Jjf[I-exp(-t)], x=$=exp(-:), qy*exp(-t), T=$ (4-l) 

We shall seek a solution of Eq. (2.3) by introducing the two independent arguments 

x, 0 = TJ + us, v < 1 (4.2) 

Here, uis the velocity of the (slow) (n, s)-wave. Then, Eq. (2.3) takes the form of the sine-Helmholtz 
equation 

a2* a20 
(1 --u 2kjgf --sin@= 0, v c I 

2X2 
(4.3) 

The sine-Gordon equation would be obtained in the case of a fast wave (u > 1). 
In any case, the variable phase of the wave in the space x, rl, s is connected with the initial (real) 

variables y and t as follows: 

I,~(.Y, t) = (y +vC20exp - ( +c2T, 1*+ c*+ T=f (4.4) 

It is important that there is a periodic field (with respect toy) at the initial instant of time t = 0 since 
O(y, 0) = y/12. Suppose its spatial period is equal to h. At successive instants of time when t e r, we 
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have, on expanding the exponent in series 

2 

I,O(y,r)=y-vC,(r+t)+YO !- +f ( 1 T2 

The first two terms, which are linear iny and I, determine the periodic component of the wave, while 
the second two components determine its modulation. 

In order to refine the properties of the wave motion, we introduce its phase velocity Co as the velocity 
of motion of a certain constant value of the phase 0,. It is obvious that the law of motion, according 
to relation (4.4), has the form 

(4.6) 

We then obtain the exponentially increasing phase velocity 

(4.7) 

It is clear that 0, is the phase value at an arbitrary pointy at the initial instant of time. At the point 
Y=Yo= --v&r, we have Co = 0, that is, the phase value of this point, which is equal to O. = - u&z, 
remains constant in time. This can also be seen directly from relation (4.4). The quantity 

60=O,+uC,rll, (4.8) 

is the difference in the phases at the points y(O), yo, that is, the difference between the phases of the 
oscillations of the corresponding pendulums at the initial instant of time. 

It is clear that, with time, this difference in the phases departs to infinity (to the left or right of yo) 
such that Co > 0, y > y. and Co < 0, y < yo, and becomes equal to zero there. This process, as can be 
seen from relation (4.4) is concluded when t -+ m by the fact the phase value O. = - uC2r fills the 
whole space, that is, O(y, t) + Oo, t + 00. 

An equalization of the wave field occurs, that is, there is a decrease in the gradients and an elongation 
of the wave. Actually, on turning to relations (4.6), we find the law for the growth of the wavelength 
with time. Defining it as the distance A between the closest zeros of the function @[O(y, 0)], we obtain 

A= AeXp; (4.9) 

Here h is the period of the function Q(y, 0). 
It is interesting that the elongation of the spatial period with time and the increase in the phase velocity 

are compatible with the invariance of the period of the oscillations T. This period is found by integrating 
the phase velocity (4.7) within the limits from t to t + T. 

Then 

A = -A,60 [ 1 I -expq expt 

Comparing this expression with the earlier expression, we find, for T, the expression 

T A 
exp;=‘+- 1,60 

(4.10) 

(4.11) 

It does not contain variable quantities. However, there is an arbitrary value of the phase difference, 
which increases linearly along a coordinate at the initial instant of time. 

If the period is small, we are dealing with an oscillatory process. Then 

Tlr=hl(l,GO), T%z 

It is clear that the phase difference must be sufficiently large, that is 

(4.12) 
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60 9 VI2 

Otherwise, the motion has an aperiodic form. 

(4.13) 

The condition 60 = h/l:! approximately determines the threshold or point on the QY axis which 
separates the domains of oscillatory and aperiodic motion. The domain of aperiodic motion is 
concentrated around the point yo, at which there is no motion. Its length along the axis is equal to 
SO/, = h. Over this section accelerating travelling (in both directions) coherence waves of the pendulums 
are generated. When t + 00, complete in-phase behaviour is established, that is, 0 + - UC&., but the 
period of the oscillations remains unchanged. 

The elongation of the wave with time is associated with a decrease in the external field and an increase i-. 
in the coherence scale 1- t k/f, as a result of which the non-linear sine-Gordon equation (1.1) degenerates 
into a linear wave equation. There is no continuous transition of one of the solutions into another. When 
l-+ w, we approach a bifurcation point, but without passing through it. It separates the branch of long- 
wave acoustic oscillations and the original short-wave pseudo-optical oscillations, which degenerate as 
it accelerates into a second acoustic mode as the external field disappears. 

Up to now, one sign of the velocity v has been considered. In fact, two (Q $)-wave processes are 
possible. The second process likewise involves a pair of waves, but they originate from a point which 
is symmetrical about the origin of the @ axis. In other words, two pairs of waves, that depart to infinity, 
emerge from the points y. = + uC2z As a result, in the section between these points, there are two 
waves which travel in opposite directions with opposite phases. 

5. AN ACCELERATING STRUCTURAL-REORGANIZATION WAVE 

From results previously obtained [3], an exact solution of Eq. (4.3) (with a minus sign in front of the 
sine) for a structural-reorganization wave of a two-dimensional crystal lattice can be found: 

@ tn[xK(v,)h-‘1 
‘gT’ Asn[(q+vs)K(v,)h’] 

(5.1) 

We mean by @, the relative displacement (along a layer, along the Oy axis) of neighbouring atoms 
[3], and tn and sn are the Jacobian elliptic tangent and elliptic sine respectively. At the initial instant 
of time, relation (5.1) reduces to the static solution, obtained for the case [3, 41 when the slippage of 
neighbouring atomic chains at one or several interatomic distances is specified on the boundaries of 
each strip of thickness h. The value of @ is related to the period of the lattice. 

Expression (5.1) is an exact solution of Eq. (1.1) on changing to the variables X, y, t. It represents a 
non-linear wave of the microdisplacements of the atoms (a pseudo-optical mode of structural 
reorganizations) which propagates along a layer when a shear band (of thickness h) is formed in a crystal. 
The microdeformation in it is modulated along the Oy axis by the formation of transverse domain walls, 
composed of incompatibility solutions caused by the breakdown of translational order. 

If the interatomic potential barriers do not change with time, then, as can be seen from relations 
(4.1) and (4.2). s -- t, q -y, and the phase of the wave (q + u&t) is linear with respect to time and the 
spatial coordinates. We are then dealing with a periodic non-linear wave in the variables X, y, t which 
propagates at constant velocity UC* and with amplitude tn[xK(vi)/h] along the layer. This is also a pseudo- 
optical, but stationary, wave. The velocity, frequency and wavelength, i.e. the distances between 
transverse defects h, are conserved. 

The interatomic barriers can decrease according to the lawf2(t) both due to external (macroscopic) 
deformations as well as due to the temperature. Then, a crystal approaches a point of structural transition 
[4] at which the interlayer shear strength or the structural stability is sharply reduced. 

The distinctive features of solution (5.1), above all, the sharp increase in the velocity of the wave and 
its acceleration are, in fact, associated with this. It appears that dissipation in the lattice, which is taken 
account of in solution (5.1) also does not prevent this. At the same time, the phase of the wave is found 
to be a non-linear function of the time in accordance with relation (4.4). There is phase modulation 
and an increase in the velocity (up to the speed of sound) and wavelength with time as it propagates. 
The distance between the above-mentioned defects also increases, and, in the final limit, when the 
interatomic barriers disappear, the defects depart to infinity and the laminar structure of a new phase 
is formed [4], while the pseudo-optical mode degenerates into a (second) acoustic mode, which 
accompanies the phase transformation. It is well known that the growth of a martensite phase in certain 
metals has an explosive nature. However, further analysis is required here. 
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Hence, the generalized sine-Gordon equation (1.1) has a number of exact solutions that correspond 
to certain external fields f(t), which increase and decay with time and which create the effects of 
compensation of mechanical losses in an energetically open system or, conversely, the effects of their 
activation. The proposed method of adaptive scaling, based on the introduction of reduced variables, 
enables one to take account of the balance of the inflow (outflow) of energy due to an external field 
and the dissipation in an open system. As a result, its description is simplified and reduces to the solutions 
of the classical sine-Gordon equation with constant coefficients. At the same time, the external fields 
ensure monotonic parametric control of an open system using the principle of the least or greatest 
mechanical losses. 

REFERENCES 
1. AERO, E. L., Two-dimensional orientational deformations of nematic liquid crystals in non-uniform electric fields, generated 

by surfaces with an electrical relief. KricfaNogm~yu, 1995,40,5,889-899. 
2. AERO, E. L., Weakly decaying slow modes of orientational non-linear oscillations in liquid crystals in magnetic fields which 

destabilize the structure, Tear: Mat. Fiz., 1997,111,1,132-143. 
3. AERO, E. L., Non-linear theory of elastic microshear in periodic structures, Prikl. Mat. Mekh., 2000,64,4, 674-682. 
4. AERO, E. L., Catastrophic microdeformations in crystalline lattice. Structure stability and modifications. Mater: Phys. Me&., 

2001,3,36-44. 

Translated by E.L.S. 


